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We consider the viscous motion of a thin axisymmetric column of fluid with a free 
surface. A one-dimensional equation of motion for the velocity and the radius is 
derived from the Navier-Stokes equation. We compare our results with recent 
experiments on the breakup of a liquid jet and on the bifurcation of a drop suspended 
from an orifice. The equations form singularities as the fluid neck is pinching off. The 
nature of the singularities is investigated in detail. 

1. Introduction 
A problem fundamental to the study of nonlinear partial differential equations is the 

nature of their singularities. Perhaps the most famous (and unsolved) problem is the 
suspected blow-up of the derivatives of the velocity field in the three-dimensional Euler 
equation (Majda 1986). Shocks, i.e. discontinuities in the velocity, are the type of 
singularity displayed by the one-dimensional inviscid Burgers equation (Smoller 1983). 

A different type of singularity has to be expected from three-dimensional free surface 
flow, which we will consider here. A similar study of a two-dimensional flow has been 
conducted recently (Constantin et al. 1993). Surface tension will tend to make the 
surface as small as possible by reducing the radius. The classical stability analysis of an 
infinite cylinder of fluid by Rayleigh (1878) shows that the radius does not decrease 
uniformly: owing to the constraint of mass conservation the fastest growing mode is 
the one with wavelength h z 9r,, where r, is the radius of the cylinder. Consequently, 
the fluid cylinder will decay into drops of roughly that size. 

Once the radius becomes zero locally, i.e. the original column of fluid separates, the 
description in terms of a radius function breaks down. Hence the equations must 
develop a singularity at that point. Although linear stability analysis gives a reasonable 
estimate of the size of the droplets formed, it completely fails to predict the shape of 
the surface once an appreciable deformation of the original cylinder is reached 
(Chaudhary & Redekopp 1980). For example it does not explain the fact that the 
cylinder does not break up uniformly. Rather, regular sized drops are, under most 
circumstances, followed by much smaller ' satellite drops'. Even higher-order 
perturbation theory (Chaudhary & Redekopp 1980; Chaudhary & Maxworthy 1980) 
gives only a qualitative prediction of the unequal drop sizes, but is not able to describe 
the shape of the fluid anywhere close to pinch-off. This is not very surprising, because 
the characteristic time of the linear instability is close to the time distance from the 
singularity, where expansions in the radius and the velocity are bound to break down. 
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Therefore a complete treatment of the nonlinearities is needed. The full 
Navier-Stokes equaton with free boundary conditions is extremely complicated, for 
both analytical and numerical studies. The only simulations of axisymmetric drops we 
are aware of were restricted to irrotational, inviscid flow (Becker, Hiller & Kowalewski 
1991). But even with this restriction simulations close to the singularity become 
extremely costly, since the neck region requires high resolution. A reduction of the 
problem to one dimension will give huge savings in computer time, making closeups 
of the singularity possible. 

There already exist some one-dimensional equations for axisymmetric free surface 
flow (Lee 1974; Bogy 1979). Lee only considers the inviscid case. Bogy’s equations 
allow for dissipation but are very complicated in structure and do not have a clear 
connection with the original Navier-Stokes equation. We will therefore derive a set of 
one-dimensional equations by expanding the radial variable in a Taylor series and 
keeping only the lowest-order terms of the Navier-Stokes equation. Several invariances 
and conservation laws of the Navier-Stokes equation are preserved. This will be the 
subject of the second section, along with a linear stability analysis. 

Integrating the equations near the singularity proves to be very difficult, since the 
problem becomes very stiff due to the large range of lengthscales. We develop a fully 
implicit centred difference method. This scheme is then modified to treat the convection 
term uv, by an upwinding technique which ensures negative definiteness of the 
numerical dissipation. The numerical scheme is detailed in $3. 

There is a fair amount of work applying one-dimensional equations to the breakup 
of jets (Lee 1974; Bogy 1979), liquid bridges (Meseguer 1983) or hanging drops (Cram 
1984). There is also work in this spirit on films lining a cylindrical tube (Johnson et al. 
1991). Yet a detailed comparison between experiments and one-dimensional models 
within the nonlinear regime is missing. Therefore, we try to compare experimental drop 
profiles with simulations close to the breakup point. This is found in $4 for two recent 
experiments. 

The first experiment (Chaudhary & Maxworthy 1980) examines the decay of a free 
jet of water, the second observes how a hanging drop detaches after it is adiabatically 
filled out of an orifice (Peregrine, Shoker & Symon 1990). We also produce an example 
with a high-viscosity fluid. Simulations and experiments agree very well, giving ample 
support to the idea that droplet breakup can be well described by one-dimensional 
equations. 

In the next section we take a closer look at the pinch region. We discuss a similarity 
theory for the non-viscous case and explain its failure. All viscous solutions are 
determined by universal scaling functions close to the pinch point. The concluding 
section briefly discusses the approximation used in relation to other types of 
approximations, its higher-order versions, and the full Navier-Stokes or Euler 
equations. Finally, we indicate directions of future research. 

2. The equations of motion 
We start from the Navier-Stokes equation for an axisymmetric column of fluid with 

kinematic viscosity v, density p, and surface tension y. In cylindrical coordinates it reads 
(Landau & Lifshitz 1984) 

a, v, + v, a, v, + U ,  a, V ,  = - a,p/p + ~ ( a ;  V ,  + a; V ,  + a, v,/r - vT/ r2 ) ,  
O?t v, + 0, 2, v, + 21, a, v, = - a, p / p  + v(a; v, + a; u, + a, ZI,/Y) -g ,  

(1) 

(2) 
where u, is the velocity along the axis, v, the velocity in the radial direction, and p the 
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pressure. The acceleration due to gravity g points in the negative z-direction. The 
continuity equation reads 

Equations (2) and (3) hold for 0 < r < h(z, t).  The balance of normal force gives 

a, 0, + a, 0, + ur/Y = 0. (3) 

T Z . ( I . ~  = -y(l/R,+ l/R,), (4) 

where (I is the stress tensor, n is the outward normal, and R, and R, are the principal 
radii of curvature. The tangential force balance is 

n . 0 . t  = 0. 
Explicitly, this gives 

2v [ a , ~ ,  + (a, 0,) h’, -(2, U ,  +a,v,) h’] = - -+- P - -  
p 1+h’2 P R, ’( l,) l y = h  

( 5 )  

for the normal forces, and 

(7) 
V 

[2(a, u,) h’ + (a, v, + c?z v,) (1 - h”) - 2(az uz) h’] = 0 ( , = h  
1 + h’2 

for the tangential forces. The prime refers to differentiation with respect to z. Finally, 
the surface has to move with the velocity field at the boundary: 

a, h + z’, h’ = U ,  (8) 

Since we are going to look at thin columns of fluid relative to their elongation, we 
expand in a Taylor series with respect to r .  By symmetry we get 

v,(z ,r)  = 2:,+v,r2+ ... , 

v,(z, y) = - iu’r z n - 10’ 4 z y3 - . . * .  

(9) 

(10) 

p(z9r) = p o + p 2 r 2 + . . .  . (1 1) 

and (3) is satisfied by choosing v, to be 

The pressure is expanded in the same way: 

We now insert (9)-(11) into (I), (2), and (6)-(8) and solve the equations to lowest 
order in r .  In the case of (2) this gives 

a, u, + vn v;, = -p;/p + v(40, + u;) -g .  (12) 

Equation (1) is identically satisfied to lowest order. 

p a  in (12): 

Similarly, (7) gives an expression involving v 2  : 

Remembering that h‘ is also of order r we get from (6) an expression for the pressure 

Po/P  + v 4  = (Y/P> (1 /R, + 1 /&I. 

-v; h’+ 2vz h -${ h -221; h’ = 0. 

(13) 

(14) 

Equations (13) and (14) can be used to eliminate pa  and u, from (12) giving 
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a, h = - U ,  h' -fvi, h. (16) 

The formula for the mean curvature +(l/Rl + l /RJ of a body of revolution is known 
from differential geometry (do Carmo 1976). Thus, dropping the index on v, and 
denoting the surface tension contribution of the pressure by p ,  we finally get 

(17) 3, u = - U U ,  - p,/p + 3 ~(h~u, ) , /h~  - g ,  

and a,h = -vh,-iu,h. (18) 

Here the index z refers to differentiation with respect to z.  When solving the set of 
equations (17), (18) for z E [ - I ,  I ]  we impose the boundary conditions 

h(+l,t) = h, - (19) 

and U ( + l , t )  = U k .  (20) 

The set of equations (17)-(20) will concern us for the rest of this paper. We reiterate 
that the physical velocity field (9), (10) described by (17), (18) has both radial and 
longitudinal components with a non-trivial r-dependence. The physical pressure (1 1) 
also carries contributions from the shear stress. This should be born in mind when we 
refer to u and p in (17), (18) as 'velocity' and 'pressure'. 

There are two important conservation laws for this simplified system. First, mass 
conservation means 

C?t V = xh% IFz, (21) 
2 

I/= nl-2h2dz.  (22) 

Second, the sum of the kinetic energy 

1 

Ekin = $ T C ~  h2v2 dz 

and the potential energy 

obeys the balance equation 

2yhh, a, h 1 

a,(Eki, + E,,,) = 9 - x fph2v3 - +ph2v - 3vpvh2u, +pgh"c;) I . (25) ( (1 +hi); -1 

So, apart from boundary terms the total energy changes with the rate of energy 
dissipation 

(26) 
1 

93 = - 3xvp l-, (hv,)' dz. 
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Since 9 is negative definite, it follows that, without external driving (boundary terms 
in (25)), the total energy can only decrease. Note that the potential energy for the full 
equations is precisely (24), so that the exact surfaces of static equilibrium are also 
equilibrium surfaces of the model: they are states which minimize Epot (Landau & 
Lifshitz 1984). Famous examples are the equilibrium shapes of pendant drops (Michael 
& Williams 1976). This was the reason for keeping lower-order terms in the expression 
for p : in a consistent expansion by orders of r the expression for p simply would have 
been 

P = Y(1 / h  - h * A  

resulting in a different form of the potential energy. We also note that 9 is not negative 
definite for the viscous term as cited by Cram (1984). His term vv,, may feed energy into 
the fluid, which we found to prevent the system from reaching an equilibrium state. 

Although of limited applicability in practice, it is instructive to repeat the stability 
analysis for a fluid cylinder in the case of our model. Assume that a cylinder of radius 
r ,  receives a sinusoidal perturbation of wavelength h = 27t/k; then 

~ ( z ,  t) = ro[ 1 + E(t) cos (kz)] ,  

v(z,  t )  = ~ ( t )  v,, sin (kz) .  

Assuming E(t) = E exp (of), (17) and (1 8) give to lowest order in E 

W V ,  = -(?//I) ( k / r ,  -yo k3) - ~ v v , ,  k 2  

and w = -$I,, k ,  

respectively. This leaves us with the dispersion relation 

W' = ~ i ~ ( ( r , k ) ~ - ( r , k ) ~ ) - 3 v ~ k ~ ,  

(di = y / r i p .  
The solution of (27) is 

where 4, = V 2 P / Y  (29) 

is a viscous lengthscale. Both the limits of zero viscosity, 

coincide with the exact result (Chandrasekhar 1961) if an expansion to lowest order in 
kr, is made. 

Equation (28) shows that there is an instability for long wavelengths, the stability 
boundary being kr, = 1, independent of v. In the case of a random disturbance, 
however, the relevant quantity is the most unstable or fastest growing mode. In the 
general case this is 
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For v = 0, the most unstable wavelength is therefore A,,, = 8.89r0 instead of the exact 
value of 9.01r0 (Chandrasekhar 1961). In the limit of very high viscosity the infinite- 
wavelength perturbation becomes the most unstable one. 

3. Numerical procedure 
The numerical approximations were computed using a rather simple finite difference 

scheme. The spatial mesh is a highly non-uniform, graded mesh; its refinement is based 
on the behaviour of the computed solution. The time-integration method is an adaptive 
fully implicit @weighted scheme. 

Let the space mesh be 
z1 < z2 < ...  < zfi 

and adopt the following notation : 

Azi = z,+] - z ~ ,  

z .  2+1 1 = q- 2 7.i+zi+l)3 

Az,+; = Z .  3 - 2 .  1 z+z 2-$' 

The meshes used were always constrained to satisfy 

< 2. 
1 Az. -<> 
2 Az,+] 

The solution at each time level is defined by two arrays, and {vi}:;'; the 
quantity hi is the value of the approximate radius h at the mesh point z, and the value 
vi gives the value of the approximate velocity u at the point zi+;. In describing the 
discrete equations for a particular time step it is convenient to let dv, and dh, denote 
the changes in ui and h,, respectively, that take place over the step. 

Difference analogues of the v-equation, (1 7), were written corresponding to each 
point z,+t and the difference analogues of the h-equation, (1 8), were written for each zi. 
The time-derivative term was approximated by dui/At or dh,/At, respectively. The 
relation forp was used to define it at each point zi in terms of h at ziPl, zi, and Z,+], using 
centred differences for the h, term and a second difference for A,,. (Near the bottom of 
a pendant drop this was changed; see the remarks just after (34).) This definesp at each 
time level in terms of h at that level. 

In setting up the difference equations that mimic (17) and (18) the spatial terms 
(everything except the time-derivative terms) are evaluated using a weighted average of 
the current value and the yet-to-be-computed value. These ' mid-step' values can be 
written as ui + Hdui and hi + 8 dh,. With 8 = 0.5 this gives a second-order correct in the 
time-difference equation, but we used H slightly larger than 0.5 (typically 0 = 0.55). 
Using 8 close to one half gives a small first-order truncation term (say 10 O/O of the first- 
order backward-difference equation). Taking 8 > 0.5 gives smoother discrete solutions 
than 8 = 0.5. 

The approximation of the U U ,  term at zi+; is done as follows: 

U U ,  2 u ~ ( u ~ + ~  - u ~ - ~ ) / A z ~ + ;  + NVT, 

where NVT is the numerical viscosity term that 'upwinds' this nonlinear convective 
term. The NVT is structured so that it is an energy dissipation term of small size; the 
usual technique of simply skewing the difference equation in the direction that the fluid 



Drop formation in a one-dimensional approximation 21 1 

is coming from does not assure such a property. The NVT term that we use is a 
difference analogue of 

where .”(z) = BvAz and B is a non-negative parameter. Specifically, 

Azi vi+l + Az,+~ vi 
Azi+Azi,, ’ 

i7i+l = 

The rest of the v-equation formed as central differences. Note that associating p with 
the zi gives p ,  at the zi+; points. The viscosity term in (17) is very similar to the NVT 
term; the ;-term is just the constant v. 

The h-equation at z, has two spatial terms. The first, oh,, is approximated by 
fii(hi+l - IZ~-~) / (AZ$  + AziP1). The second, :uz h, is approximated by 

oi - ui-l ( Az, + AziPl )h i .  

In solving the nonlinear difference equations we use Newton’s method. Many of our 
simulations used only one Newton step per time step, starting from an initial guess 
based on linear extrapolation from the previous two time levels. It is quite easy, and 
reasonably efficient, to control the time step in such a way that one step of Newton’s 
method reduces the error to very close to rounding error. It is worthwhile pointing out 
that even if the decision is made to only use one step of Newton’s method it is useful 
to code it in general, since observing quadratic convergence of the iteration is a good 
check on whether the linearization has been done correctly. 

4. Comparison with experiment 
The first experiment we consider studies the breakup of a liquid jet (Chaudhary & 

Maxworthy 1980). Water is pumped through a nozzle at high speed to form a liquid 
column virtually unaffected by gravity. A periodic perturbation, whose amplitude and 
frequency can be controlled, is applied to the jet as it leaves the nozzle. The system is 
allowed to reach a steady state, in which the jet at a sufficiently large distance from the 
nozzle has completely broken up into droplets. Photographs of this stationary 
configuration are taken. 

We try to model the experiment as closely as possible, but since we can only simulate 
up to the point of the first singularity (owing to limitations of our current program) we 
cannot reach the stationary state. Instead, we fix h+ = h- =- ro 4 1 and v+ = o- = V, and 
over a period of eight wavelengths smoothly turn on a small sinusoidal perturbation 
to u-. 

Thus the parameters of the simulation are the length of the jet 21, its initial radius 
ro, the fluid parameters y / p  and v, the speed of the jet V, and the amplitude V,  and 
frequency,f, of the perturbation. We chose v,/21= 0.004, so the size of the drops is very 
small compared with the jet length and the precise value of this ratio is immaterial. V, 
was adjusted to make breakup times conform with experiment. The remaining 
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FIGURE 1. Comparison between a decaying water jet (from Chaudhary & Maxworthy 1980) (upper) 
and our simulation (lower). We processed the original image so as produce a white background. The 
nozzle is to the left. The point where the first drop detaches from the experimental jet has been aligned 
with the corresponding point of our simulations. The horizontal scale has been adjusted as well. The 
parameters are h / r ,  = 14.57, lJr0 = 6.54 x and p2 = 239. The fluid parameters in the experiment 
differ slightly from the ones quoted in table 1 ,  due to additives. 

Water Glycerol Glycerol 
20 "C 20°C 25°C 

v [cm2 s-'1 1.00 x 11.8 7.6 
Y I P  [cm s -2 1 fluid-air interface 72.9 50.3 50.0 
4 = (Y/Pg)s [cml 0.273 0.226 0.226 
1" = P V 2 / Y  [cml 1.38 x 2.79 1.15 
t" = v3p2/y2 [s] 1.91 x lo-"' 0.652 0.174 

TABLE 1. The physical parameters for water at 20 "C and glycerol at 20 "C and 25 "C, quoted from 
Weast (1978). The first line contains the kinematic viscosity v, the second the surface tension divided 
by density y /p .  The remaining three lines contain characteristic length- and timescales; g is the 
acceleration due to gravity. 

dimensionless parameters controlling the problem are h/ro, lv/rn, and the Weber 
number /Iz = pro V 2 / y .  Here h = V/ f ,  is the wavelength of the perturbation and 1, the 
viscous length (29). Typical values for fluid parameters can be found in table 1. The jet 
experiments were done with water. 

For the jet, the linearized problem of 92 now takes place in a semi-infinite geometry, 
where surface perturbations are prohibited to the left of the nozzle opening (Keller, 
Rubinow & Tu 1973; Leib & Goldstein 1986). However, for large Weber numbers (239 
in the present experiment) the growth of unstable modes is just the same as the 
temporal growth of $2, translated into space via the jet velocity V. Also, the parabolic 
velocity profile of the nozzle opening has relaxed into a plug profile in the relevant 
region of the jet (Chaudhary & Maxworthy 1980), so we are assuming a constant 
profile right from the opening. 

We follow the simulation up to the first singularity. The resulting profile is aligned 
with a picture of the experimental jet, to make the minima in front of the drop which 
is about to detach coincide. In figure 1 theoretical and experimental profiles are 
compared for h / r ,  = 14.57. The case with the smallest perturbation is shown 
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(Chaudhary & Maxworthy 1980). Allowing for some blur of the photographs, the 
agreement in the shape of the drop about to form is quite nice. Note that the breakup 
is taking place in a very asymmetric fashion (with respect to the breakup point) : on the 
right side the profile is quite steep forming a very much rounded drop; on the other side 
a flat neck formed, which will eventually coalesce into a smaller satellite drop. 

An even more direct comparison is possible with an experiment investigating a 
dripping tap (Peregrine et al. 1990). As long as the drop is small, it will be suspended 
stably from the orifice. By slowly filling in more liquid, the drop goes through a series 
of stable states, until eventually gravity overcomes surface tension and the lower half 
of the drop falls. Subsequently, a thin neck forms and the lower part of the drop 
detaches. The stability of the drop hanging in equilibrium has been the subject of much 
study in itself (Michael & Williams 1976). The lengthscale controlling this problem is 
the capillary length 

For water, 1, and I,, the viscous length, are separated by almost five orders of 
magnitude, see table 1. Hence there is a wide range of physical phenomena to explore 
between the onset of the linear instability and the breakup of the drop. 

We will not repeat the stability analysis for our one-dimensional equations here, but 
concentrate on the breakup. The only dimensionless parameters in the problem are the 
ratios Z,/ro and l v / ro ,  where ro is the radius of the orifice. They were made to coincide 
with the experimental values, the working fluid being water. 

There are some technical problems involved in simulating the moving boundary at 
the lower end of the drop. We avoid having to use a movable grid by mapping the 
problem on the unit interval, z/Z = x E [0,1], where 1 is the length of the drop which is 
calculated using 

1, = ( Y / P d .  (33) 

M 

I(t) = J "  v(1,s)ds. 
t o  

(34) 

By definition, ~(1,s) is the velocity of the lower boundary. Care must also be taken 
to calculate the pressure at the endpoint where h, becomes infinite. For the values 
X E  [0.9,1] we calculate p by interpolating h(x) with an even fourth-order polynomial. 
Then all the singularities in the mean curvature cancel. 

Figure 2 shows a series of profiles taken at constant time intervals of 0.4(r,3p/y)i. In 
the experiment, this would correspond to 6.6 ms. Given the very small timescale it 
would be very costly to let fluid drip as slowly as is possible in experiments. To still let 
initial oscillations die out, the viscosity is set to a very high value initially, and is then 
reduced to the value of water well before the first instability. Fluid is injected at the 
orifice with speed 0.02y/(&,). To the profiles at constant time intervals we add a 
snapshot of the drop as the width of the neck becomes O.O1ro. We also superimpose an 
experimental picture of the drop (Peregrine et al. 1990), taken at the point of breakup. 

The very good agreement with simulations is especially impressive since this was not 
to be expected from a simple one-dimensional approximation. In particular in the 
lower half of the drop the assumption h + 1 seems to fail, but one must remember that 
this part of the drop is almost static in a moving frame of reference. But the static limit 
of the equations is retained exactly in the approximation. Note that although the linear 
instability of the hanging drop is not investigated explicitly, it is also accurately 
described by the model. Namely, it determines the total volume of the drop (upper and 
lower half combined) and influences the point of breakoff. 

Again, the breakoff occurs very asymmetrically, as was already observed in the jet 
decay. The asymmetry therefore does not come from the action of gravity. This is also 
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FIGURE 2. Simulation of a drop of water suspended from a circular orifice of radius r,, = 0.26 cm. This 
gives parameter values lJr0 compare table 1. The time distance 
between profiles is 0.4(r:p/y)~,  starting from a point where the drop is already falling. We also 
superimpose a profile at the snap-off and the corresponding experimental picture from Peregrine 
et al. (1990). There is no adjustable parameter in the comparison. To enhance contrast, we erased the 
background in the original photograph. 

0.992 and lJr0  = 4.89 x 

confirmed by the estimate of Peregrine et al. (1990), who estimate that by the time the 
neck is formed, straining forces due to surface tension outweigh the straining forces 
due to gravity. 

We conclude this section by reporting on a simulation of a fluid with significantly 
higher viscosity. With the radius of the orifice being 0.06 cm, we adjusted &/r0  and IJr,, 
to match the parameter values for glycerol at 25 "C, as given in table 1. The viscosity 
of glycerol is about 1000 times higher than that of water, leading to a very different type 
of dynamics. Figure 3 shows the neck being pulled into a long and thin thread. Its 
length is 40 times the radius of the orifice at the point of rupture. Qualitatively, this is 
consistent with linear stability analysis : for high viscosity, the most unstable wavelength 
becomes large, see (32). On the other hand, the radius yo of the thread becomes very 
small, so (32) cannot account for its length in any quantitative way. The origin is 
clearly dynamical. The break occurs at the upper end of the thread in the simulation 
presented, but it may also happen close to the drop under slightly different conditions. 
Experiments with high-viscosity fluids in the same geometry are in progress (Shi & 
Nagel 1992). 
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FIGURE 3. Same as figure 2, but with the fluid being glycerol at 25 "C and ro = 0.0625 cm. The 
parameters are now lJr0 = 3.61 and lJr,, = 18.3. Note the long neck, which is the trademark of high- 
viscosity fluids. 

5. Nature of singularities 
We now look closer at the point where the fluid neck is pinching off. As the radius 

goes to zero, pressure forces are expected to diverge, and the small amount of fluid left 
in the neck region is pressed out of it even faster. Therefore, as hmi, +. 0, where hmi, 
is the minimum radius, the velocity and higher derivatives of both h and u will probably 
become infinite at the point of rupture. This is the singularity or 'blow up' we want to 
investigate further. 

Keller & Miksis (1983) present a very interesting scaling theory for the singularity 
in the non-viscous case. There are two important differences between our problem and 
theirs : their geometry is two-dimensional rather than three-dimensional-axisymmetric, 
and they study the time after the breakup. 

The idea of their study may be described as follows : since h becomes very small near 
the singularity and u large, the pinch region is separated in scale from the boundaries. 
Therefore boundary conditions become irrelevant and the flow is determined by y / p  
alone. If At = t, - t represents the time distance from the singularity, the only available 
lengthscale is the combination (yAt2/p)i. Hence, introducing 

Z = ( Z  - z,) (yAt'/p)-;, (35) 

h = h(yAt2/p)-+, u = ~ ( y / p A t ) - i ,  (36) 

where z, is the position of the pinch point, and 

the problem can be written in terms of the similarity variables Z, h, and v alone. Once 
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FIGURE 4. A close-up view of simultaneous radius, velocity, and pressure profiles close to pinch-off 
at three time distances At from the singularity : log,,(At) = - 4.0, - 4.1, and - 4.2, in units of y / p  and 
r,,. The viscosity is v = 0.0037. The pressure is higher on the right hand side of its peak, pushing fluid 
to the left. The minimum of the radius h moves with the fluid underneath it. 

the similarity equation is solved, the resulting profile determines the evolution of the 
interface for all times up to the singularity. Note that h + 0 and v --f co as At + 0 if h and 
v are assumed fixed, consistent with the original assumptions. 

We will see, however, that this similarity argument does not carry through for the 
case of our equations, since the inviscid case appears to develop singularities even 
before hmin + 0 ! For a consistent formulation up to the point of breakup we therefore 
need to add at least a small amount of viscosity. We are confident that the following 
conjecture, due to P. Constantin (private communication), is true. It indicates that with 
viscosity the singularity does not occur until hmin goes to zero. 

CONJECTURE 1. For v > 0 and t E [0, t,] such that h(t) 2 h, > 0 the solutions of (17), 
(18) stay regular, i.e. h, v, and all their derivatives remain bounded in [ - I ,  11 for 
t E [0, t,] with bounds depending only on v and h,. 

To investigate the problem further, we chose a cylinder of radius r,  = 0.01 and 
length 2 as an initial condition. At its ends z = f 1 the radius is kept fixed and the 
velocity is set to zero. Given a slight initial disturbance in the velocity field, the cylinder 
collapses and forms a singularity after about 20(rtp/y)i. The viscous length is 

The profile near the singularity comes out quite asymmetric, as observed before. This 
is also true if one starts from initial data almost symmetric around z = 0. Two almost 
linear pieces of different slope are joined smoothly by a round piece with a radius of 
curvature comparable to the minimum radius, cf. figure 4. Hence both terms in the 
pressure in (17) are of the same order of magnitude at the minimum, while the first term 

i, = 1.4 x 10-5. 
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dominates the linear regime away from the minimum. This means the pressure is higher 
on the shallow side of the minimum (right-hand side in figure 4), forcing fluid over to 
the steeper side (left-hand side in figure 4). As seen by comparing with the velocities in 
figure 4, the minimum is convected with the velocity of the fluid, so in the frame of 
reference of the minimum fluid is expelled on either side. At the same time this causes 
the left-hand side to get even steeper. 

If there is no mechanism curbing this process, the slope will eventually get infinite. 
All our simulations, conducted with different initial radii and initial disturbances, show 
that for the inviscid equations exactly this happens and h, goes to infinity even before 
hmi, goes to zero. Note that I ,  is still less than 2 % of the minimum height in figure 4, 
yet the inviscid equations already would have blown up at the times shown. If v is finite, 
on the other hand, h, turns out to be uniformly bounded by a constant which gets larger 
as v decreases. Hence for finite, but arbitrarily small v blow-up only occurs for 
hmin + 0. 

From the conjecture mentioned earlier we conclude that viscous solutions, up to 
some finite minimum radius h,, can be well approximated by finite differences as long 
as the mesh is fine enough. Intuitively, one expects that the mesh size Az should be at 
least of the order of h,. We checked convergence near the singularity by conducting a 
series of runs with increasingly fine resolution. To save on computational effort, only 
the region around the singularity is highly resolved, the grid getting coarser by factors 
of 2 towards the outside. We plotted hmin and the maximum velocity v,,, versus the 
time difference from the singularity on logarithmic scales, see figure 5.  Lengths are 
shown in units of I ,  and times in units of the viscous timescale 

The plots agree up to the lengthscale of the coarser grid. We also monitored the highest 
derivatives in the problem, i.e. p ,  and vZz. The dashed vertical line indicates the point 
up to which they seemed well resolved. As can be seen in figure 5 ,  problems with 
resolution occur when hmin is of the order of Az, indicated by the horizontal line. Since 
the numerical viscosity NVT as introduced in $ 3  is approximately equal to vdz, 
convergence for increasingly fine grids also demonstrates that it does not introduce 
artificial effects. For the finest resolution the numerical viscosity was less than a tenth 
of the physical viscosity in the centre of the grid. From all this we feel confident that 
the plot of our best-resolved run in figure 5 gives a faithful description of the original 
equations up to the point indicated. 

Figure 5 indicates that umaz goes to infinity as the singularity hmin --f 0 is approached. 
All derivatives of the velocity as well as second or higher derivatives of the height are 
found to blow up even faster. This means that their asymptotic value increases faster 
than a negative power of Az as we increase the resolution. The maximum value of h,, 
however, approaches a constant as hmi, --f 0. This is an important self-consistency 
property of our equations : The solutions never approach a situation where the surface 
parametrization is bound to break down. 

There are some regions where hmi,(t) is close to a power law, but they never extend 
over more than two decades in lengthscales. In vmaz there is even less of an indication 
of power-law behaviour. The decay of hmi, is always faster than the 6 power law 
predicted by (35),  (36). 

Considering also the profiles h(z) and v(z) directly, we conclude that (35) ,  (36) are 
clearly not valid, even for hmin % I,. The reason may be that (h,),,, goes to infinity long 
before hmin goes to zero, hence viscosity is important even on scales much larger than 
I,. The nature of the singularity of our inviscid equations probably is specific to the 
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approximation. For example, it could be that the full Euler equations, instead of 
overturning, produce localized regions of high vorticity which our approximation 
cannot describe. 

The system described so far is determined by the four parameters yo ,  I ,  y /p ,  and u. 
If it has a solution h(z, t )  and v(z, t) ,  the system with parameters aro, al, (a3 /b2)y /p ,  
(a2/b) v will have the scaled solution 

ha&, 0 = ah(z/a, t/b), 

vab  = (a /b)  u(z/a, t/b). 

This is equivalent to saying that up to a rescaling of length and time the solution is 
determined by two dimensionless ratios, roll and lJ1, say. By the argument presented 
at the beginning of this section, one expects the solution near the singularity to be 
independent of the dimensions of the initial cylinder. Hence all solutions, €or t z t ,  and 
z z z,, can be written in the universal form 

(38) / h(z, t> = 1, h,( k ( z  -zs>/lv, ( t ,  - t)/t”>, 

v(z, 0 = f (l”/t,> Us( f ( z  - z,>/l,, ( 4  - W t , ) .  

The +_ signs in (38) take care of the fact that the solutions may have different parity, 
with fluid flowing from left to right or vice versa. 

We tested (38) by conducting simulations with different parameter values and 
calculating h, and v, from them. Namely, we increased ro by a factor of 10 and also 
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FIGURE 6. The reduced profiles h,7 and u, as calculated from different parameter values (yo, I ,  y / p ,  v) via 
(38) at ( t , - t ) / t ,  = 1.97. The solid line represents (0.01,1,1,0.0037), the dotted line ( O . l , l ,  1,0.0037), 
and the long-dashed line (0.01,1,1,0.0074). The point of touch-down is shifted to zero in each case, 
the units are the viscous scales. The dotted lines had to be flipped over (-signs in (38)) to correct for 
the difference in parity. 

varied the viscosity. This causes the global behaviour of the solution to change 
dramatically, yet on length and time scales comparable with 1, and t ,  or smaller (38)  is 
obeyed beautifully. Figure 6 shows h, and u, as calculated from different runs, all at 
( t ,  - t ) / t ,  = 1.97. Note that the reduced profiles still evolve in time, unlike the similarity 
solutions of (35), (36). 

6. Discussion 
The key to the success of the present invc,Ligation lies in the construction of 

appropriate model equations to study the motion of thin columns of fluid. First, our 
expansion method allows viscous body forces as well as viscous boundary conditions 
to be taken into account. This makes it distinct from methods where the average 
velocity over the cross-section is the dynamical variable, such as in the equations for 
shallow water waves (Peregrine 1972). Precisely due to the inclusion of boundary 
conditions, the viscous terms in our equations become purely dissipative. 

Second, we take the exact curvature term (17) into account. The importance of those 
higher-order terms of the expansion for strong variations of h was noticed before 
(Johnson et al. 1991). Figure 2, for example, beautifully demonstrates how the model 
takes equilibrium shapes into account. Also, regions of high slope (h, z 10) at the top 
of the drop are very well represented. 

Apart from experimental test, though, we do not see how to give a priori estimates 
of the quality of approximation in the framework of our model alone. A possibility is 
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to study the next order in the expansion. Apart from an equation of motion for h, we 
now have two equations for the expansion coefficients of the velocity field, uo(z, t )  and 
vg(z,  t). Those equations, although readily written down, are considerably more 
complicated than (17), (1 8) and require new numerical methods. Therefore, we 
consider it a study all of its own which should be investigated separately. 

Most importantly, our equations remain self-consistent right up to the point of 
rupture hmin --f 0. This means that no other singularity occurs before that point. This 
is supported by our simulations over a wide range of viscosities and by preliminary 
mathematical analysis (P. Constantin, private communication). Specifically, there is no 
overturning of the profile. The full equations of motion certainly would not form 
singularities even in the case of overturning, but there does not seem to be experimental 
evidence for this to occur before breakup. (This excludes initial or boundary conditions 
with strong transversal velocity gradients, which ‘force’ the flow to overturn, but 
which are not realizable in our equations in the first place.) Hence we see no reason to 
doubt the applicability of our model even for small viscosities such as in water. 

However, the inviscid version of our equations clearly is at odds with experimental 
evidence, showing overturning on experimentally accessible timescales. This reflects the 
singular nature of the limit v + 0. We hope this will shed some light on the nature of 
this limit in the Navier-Stokes equation and its relation to the Euler equation. 

We plan to develop a code with an adaptable grid, which moves with the position 
of the minimum and introduces new grid points when needed. This code is expected to 
be much more effective and to allow us to reach considerably higher resolution. We 
hope this will allow us to explore the asymptotic regime even more carefully. 

Another expected benefit of the new code is to be able to go beyond the first 
singularity by introducing a new grid point at the pinch. The equations will then be 
integrated from there with new boundary conditions. This will allow us to investigate 
a new range of phenomena, like formation of satellite drops, recoiling, etc. 

In conclusion, we have developed a one-dimensional equation for an axisymmetric 
thread of fluid. Computed profiles coincide nicely with experiments. The inviscid 
equations are inconsistent, leading to singularities even before the breakup into drops. 
All solutions with v > 0 are described by the universal scaling functions h,, v, 
sufficiently close to the singularity. 

We are grateful to L. P. Kadanoff for getting us interested in the problem, and to P. 
Constantin for discussions. D. Grier helped tremendously with the image processing. 
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